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Abstract

A method is presented that incorporates microstructural information into a model of the mechanical behavior of
two-phase composite materials. The approach is to determine periodic microstructures that are statistically similar to
the actual microstructure of the material under consideration. The utility of this method is that computationally
tractable finite element simulations can then be carried out on representative unit cells that are directly obtained from
microstructural observations. To illustrate this method, mechanical tests are performed on perforated aluminum sheets
with various microstructures, and the results are compared to finite element simulations of selected representative unit
cells. The simulations agree with the trends observed in the experiments, including measurements of the overall strength
and ductility of the sheets. Advantages and limitations of the approach used here are discussed. © 2002 Published by
Elsevier Science Ltd.
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1. Introduction

Materials with two distinct phases represent a broad class of materials, including dispersion-strength-
ened alloys, mechanically alloyed materials, spheroidized steels, and metal- and ceramic-matrix composites.
Incomplete densification during processing, creep cavitation, or void nucleation during ductile fracture can
cause even nominally homogeneous materials to contain a significant fraction of voids. These voids can also
be thought of as secondary phase. The microstructure of a two-phase material can in turn have a profound
effect on the mechanical properties of the material, particularly on the initiation and evolution of damage.
For example, research by Lewandowski et al. (1989) on aluminum-silicon carbide composites has shown
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that fracture usually initiates at large particles, inclusions, and regions of clustered silicon carbide particles.
They also observed that damage accumulation ahead of a macroscopic crack tends to occur in regions
where reinforcements are clustered together.

Many investigators have studied two-phase materials by idealizing the composite microstructure as
having a simple periodic structure, with one or two reinforcing particles (or voids) within each unit cell.
With this assumption, estimates of the macroscopic response of the material can be obtained by solving an
appropriate boundary value problem formulated on a representative unit cell. This approach has been used
to estimate the flow behavior of metal-matrix composites (Bao et al., 1991; Christman et al., 1989) and of
porous metals (Koplik and Needleman, 1988). Moreover, simple unit cell models have been used to study
the damage mechanisms in composite materials, such as interfacial debonding (Needleman, 1987), particle
cracking (Finot et al., 1994), and ductile failure in the matrix (Llorca et al., 1991). While these analyses
have provided important insights into deformation and damage initiation in these materials, they also
possess significant limitations as well. One important limitation is that the predicted behavior can be
strongly affected by the choice of assumed unit cell parameters (Bao et al., 1991; Povirk et al., 1992).
Furthermore, a simple unit cell with one reinforcement (or void) cannot provide a realistic portrayal of
damage evolution in a composite material. For example, experiments on aluminum sheets containing
randomly distributed perforations showed the pronounced effects of hole distribution on resultant me-
chanical behavior (Magnuson et al., 1988). Corresponding finite element calculations by Becker and
Smelser (1994) showed that a simple unit cell with one hole could not adequately predict the ductility of the
sheets.

More recently, investigators have begun to account for the effects of microstructure on the mechanical
properties of two-phase materials. A central problem that develops, however, is the computational expense
associated with incorporating large amounts of microstructural information into the model. To make the
problems more tractable, researchers have used different procedures to simplify the problem. For example,
Ostoja-Starzewski et al. (1994) developed a finite difference lattice model in which damage evolution is
simulated by sequentially removing bonds in the model if the lattice strain exceeds a critical value. While
this method is quite useful in examining the effects of material constants on the qualitative behavior of
composite materials, more detailed descriptions of material behavior are required to model real composite
materials. Moorthy and Ghosh (1998) have developed a model in which a composite material is divided
into Voronoi cells, with each cell containing one reinforcement at most. For each Voronoi cell, a stress
hybrid method is used where an equilibrated stress field (derived from an Airy stress function) is assumed
within the cell and displacements are interpolated on the boundary of the cell. While the method is complex,
it appears to have great potential in modeling deformation and damage within composite materials.
Torquato (1998) proposed a model for statistically inhomogeneous two-phase materials consisting of in-
homogeneous fully penetrable spheres that permits one to represent and evaluate certain n-point correlation
functions that statistically characterize the microstructure. Ibnabdeljalil and Curtin (1997) studied the
failure behavior of fiber-reinforced composites using a three-dimensional lattice Green’s function model
under “local load sharing” conditions (i.e., stress from broken fibers is transferred predominantly to
the nearby unbroken fibers). Weakest-link statistics were then employed to investigate size effects and re-
liability.

The intent of this work is to develop alternative tools for incorporating microstructural information into
models of two-phase materials. The approach considered here is to determine a periodic microstructure that
is statistically similar to the actual microstructure under consideration. With a periodic microstructure so
determined, a numerical analysis can be performed on a single unit cell of the periodic structure, with an
associated reduction in computational cost. To test the procedures, idealized composites are constructed by
perforating aluminum sheets with various complex patterns of holes and subjecting the specimens to
standard uniaxial tensile tests. After corresponding periodic microstructures have been determined, finite
element simulations of uniaxial tensile tests are performed on representative unit cells and the results are
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compared to experimental results. This study is a continuation of an investigation by Povirk (1995), who
compared the elastic behavior of complex microstructures to that of selected representative unit cells.

2. Procedures

The general procedures used in this study are outlined as follows. Six complex patterns of circles were
generated and used as templates to obtain aluminum sheets with various hole distributions. The mechanical
behavior of the perforated sheets was then determined experimentally by uniaxial tensile testing. Numerical
models of the six complex microstructures were developed by first obtaining corresponding unit cells that
have similar spatial distributions of holes; the methods used in the determination of the unit cell parameters
will be discussed subsequently. Finite element meshes were then generated for each of the six unit cells, and
appropriate periodic boundary conditions were implemented. The flow behavior of the aluminum matrix
was characterized by isotropic, rate-dependent J, flow theory, with initial strain-hardening followed by
eventual strain-softening. The behavior predicted by the unit cell models were then compared to the cor-
responding experimental results.

2.1. Generation of hole patterns

The region in which the hole patterns were generated were assumed to occupy a rectangular region of
dimensions H; x H, (see Fig. 1). Each pattern was arbitrarily assumed to contain 115 holes, with the hole
diameter chosen such that the area fraction was 10%. The initial step was to discretize this region into an
N, x N, array of points, given by
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Fig. 1. Typical hole pattern used for the perforated aluminum sheets.
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The hole patterns were generated by assigning, at each of the discrete points defined by Eq. (1), a number p
of the form
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where r represents a random number ranging from 0 to I, and the variables ¢; are input parameters that
were used to exert a measure of control over the generated patterns of holes. Circles were placed starting at
the point with the maximum value of p and sequentially thereafter at points with descending values of p.
Any new circle location that overlapped or touched an existing circle was rejected. Six different micro-
structures were generated by selecting an initial “seed” for the random number generator and choosing
different values of the parameters ¢. Templates for the aluminum sheets were generated based on the
calculated hole coordinates.

2.2. Experimental procedure

Specimens were machined from 1100-H14 aluminum sheets. Each sample had a thickness of 0.81 mm, a
width of 30.5 mm and a gauge length of 30.5 mm. The hole patterns were printed out on a laser printer and
bonded to the aluminum tensile samples. With the template attached to the specimens, holes with a dia-
meter of 1.016 mm were drilled in the appropriate locations. For each of the six patterns that were gen-
erated, three identical samples were prepared. After drilling, any excessive metal extending out of the holes
was sanded off, and the specimens were subjected to annealing at 400 °C for 60 s. (O-temper, Baker et al.,
1979).

Tensile tests were conducted on an MTS servo-hydraulic testing machine configured with a 458.20
MicroConsole using a TestLink interface. The MicroConsole was equipped with a DC controller for
control and data acquisition of the loads and an AC controller for control and data acquisition of the
displacement. A MTS 632.11B-20 extensometer with an attachment kit for flat sample applied was used to
measure the strain of the sample. The default distance between the two knife edges of the extensometer was
25.4 mm but was modified to be 30.5 mm to match the gauge length of the sample. Another DC controller
on the MicroConsole was used for control and data acquisition of the strain data from the extensometer.

One difficulty involved in the experiments was that as failure progressed, significant rotation of the
specimen would often occur. This is an important problem, since the model of sheet deformation does not
account for this effect. To limit this effect, we first applied a small tensile load to align the sample. Once the
specimen was aligned, we then tightened two adjustable “‘stops” on each side of specimen to limit the
rotation of the specimen during testing. The extensometer was then attached to the sample, and a constant
velocity of 0.04 mm/s was prescribed to the lower grip. The load, displacement and strain (actually the
distance between the two knife edges of the extensometer) was output to a computer through a LAB-PC
data acquisition expansion board. A LabVIEW (1996) program was created to process these data and
output the engineering stress and strain of the sample. Each sample was pulled to complete failure.

2.3. Selection of unit cell parameters

The first step in the selection of unit cell parameters is to represent a complex pattern of holes by a
discrete indicator function
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. [0 for phase 1
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where phase 1 and phase 2 represents the aluminum matrix and the holes, respectively. The corresponding
unit cell that will be used for the finite element calculations is described by a similar indicator function.

The power spectral density of the complex patterns is obtained at discrete frequencies by first calculating
the two-dimensional, discrete, fast Fourier transform of the indicator function, G°(f", fy”z)

Ny—1IN;—1

G ) =3 exp(2mixg, f1) exp(2miye, )8 (¥, i) 4)

l=0ln=0
at frequencies given by
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Because the indicator function is real, its Fourier transform is independent of the signs of the frequencies
S and f). The one-sided power spectral density of the complex pattern, P°(f", f"2), can then be written as

Press et al (1992)

GE(fen, )P for ny,ny =0
( n f”z) = 2|Gcmn1’]iftz)|2 forn; >0, n, =0, orny =0, n, >0 (6)
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The use of the fast Fourier transform requires that both N, and N, be powers of two. In the following
discussions, frequencies with indices of n; and n, will refer to those associated with the complex hole
patterns.

The next step is to choose the desired number of holes for the unit cell, an initial set of dimensions /; and
h, for the cell, and an initial set of hole positions. The dimensions for the cell were chosen to yield the same
area fraction of holes as in the complex patterns. The indicator function for the unit cell is then written as

pe,) =3 golx— ¢,y — o) ()
=1

where gy (x, y) describes the shape of the holes, (l)f and q’)f are the coordinates of hole  and n, is the number
of holes in each unit cell. For this study, each unit cell was assumed to contain 12 holes. The unit cell is
discretized by an M; x M, array of points so that the fast Fourier transform of the periodic structure then
takes the form

A ZGO L) exp(2mi £ ¢)) exp(2mi £ ) (8)

at frequencies given by
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and where Gy (™, f° '”2) represents the fast Fourier transform of gy(x, y). The corresponding power spectral

density can be obtalned by Eq. (6). Frequencies with indices of m; and m, will always refer to those as-
sociated with the unit cell.

Note that the discrete power spectral densities of the complex and periodic structures are, in general,
obtained at different frequencies. Furthermore, assuming that the dimensions of the unit cell are smaller
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than that of the random structure, the frequencies associated with the periodic structure will be spaced at
larger intervals in comparison to the complex structure. Therefore, to directly compare the spectral density
of each structure, the power spectral density of the complex structure has to be “rebinned” to match the
frequencies of the periodic structure. For a frequency bin defined by

my—1 my m my+1 "72*1_;’_ my my 4 fmtl
TAREY AT R e O "o

the rebinned power spectral density of the complex microstructure P° (fm, f) is written as

fm f”’2 ZZW ny, ny)P f”’) (11)

ny= nnl n

where nl1 <n < n{ and n’2 < < ng are the range of indices whose frequency bins are within the intervals
given in (10). Similarly, w(ny, n) represents the percentage of the frequency bin of P°(f;", f,) located in the
intervals in (10).

For a given set of unit cell dimensions, the hole positions are found by minimizing the function

2
My/2 My /2 (fml fm';) _ (AC/Ap)PP(ﬁml’fmZ)
r=2.2 v NGRS (12)
my=0 m; = x ’

where A¢ and A” are the areas of the entire structure and the unit cell respectively. The function @ becomes
large when holes are either in contact or very close to one another, thereby providing an artificial penalty
for solutions that are inconsistent with the form of the indicator function given in (7). Conversely, when all
the holes are isolated from one another, ¢ becomes identically zero. The specific form of the function @
does not significantly affect the results.

Finding the absolute minimum of »* for a given set of cell dimensions was complicated by the fact that
the residual »? typically had many local minima. Hole positions were found by initially considering the
summation shown in Eq. (12) truncated to include only a few of the lowest frequencies, and minimizing this
function. Higher frequency terms were then added in the summation, and the function was again mini-
mized. This process was repeated until all of the terms in the summation were included. Each minimization
was carried out by use of the conjugate gradient method (Press et al., 1992). Several initial guesses of the
hole positions were required for each set of unit cell dimensions to be assured that a reasonable correlation
between the spectral densities of each microstructure was obtained. With the current state of development
of the numerical procedures, convergence to the absolute minimum of y?> was not guaranteed. An incre-
mental search was performed over all realistic unit cell dimensions by continually adjusting the aspect ratio
hy/h;. The most representative unit cell had dimensions and hole positions corresponding to the smallest
value of y? obtained by the procedures.

The motivation for using the power spectral density to compare the complex and periodic hole patterns
is that it can be thought of as a probability density function in the frequency domain Parzen (1962).
Periodic hole patterns with similar spectral densities to that of the actual perforated sheets should therefore
have a comparable hole distributions, and presumably, similar mechanical behavior as well. A more in-
tuitive way of thinking about the power spectral density is that it can be loosely thought of as representing
the “diffraction pattern” of a two-phase material, in that the spectral density of the indicator function is
mathematically very similar to the intensity distribution given by the kinematical theory of electron dif-
fraction (Hirsch et al., 1977). For example, if the hole distribution is highly ordered, the spectral density will
have very sharp peaks, much like the diffraction pattern of a single crystal. Conversely, the spectral density
becomes more diffuse as the distribution of holes becomes more random.
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2.4. Finite element calculations

Simulations of uniaxial tensile tests were performed based on the selected unit cells and the results were
compared to the behavior of the corresponding aluminum sheets. Finite element meshes were obtained
using the commercial mesh generating program HyperMesh (1997). Finite strain, plane stress, four-node
quadrilateral elements were used in all of the computations. Periodic boundary conditions were prescribed
for each unit cell to ensure compatibility with surrounding unit cells and continuity of tractions across cell
boundaries. Denoting the displacement and force at the upper right corner node by v’ and F” respectively,
the boundary conditions were prescribed as follows. For the four corners

1,(0,0) = u,(0,h,) = u,(0,0) = u,(hy,0) =0 (13)

ue(hy b)) = u?, uy(hy, b)) = u‘; (14)
For the nodes along the edges

(%, hy) — ue(x,0) =0, uy(x, hy) —uy(x,0) = ) (15)

ux(h17y) _ux(ovy) :uﬁv uy(hlvy) _u}’(oay) =0 (16)

To simulate uniaxial tension, a nominal strain rate of ¢, = 2.8 x 107* s~! was imposed in the vertical di-

rection, and the net forces on the sides of the unit cell were assumed to vanish. These boundary conditions
are imposed through the relations

itf = hatyy, =0 (17)
The nominal stress—strain behavior of the unit cell is then given by
F? ub
E—— = 18
Oy ' &y hs (18)

assuming an initial unit thickness. In addition to satisfying compatible cell deformations, the boundary
conditions described above also yield the necessary condition that the tractions, T, across cell boundaries
are continuous,

T(x7 0) = _T(x7h2)7 T(an) = —T(h],y) (19)

The stress—strain behavior obtained from (18) is for the specific unit cell, not the macroscopic behavior of
the entire perforated sheet. To obtain the stress—strain behavior of the entire structure, we need to account
for the fact that there is only one failure path across the structure. In the unit cell model, failure is assumed
to happen simultaneously in every unit cell in the periodic structure, so that multiple failure paths are
assumed. To overcome this limitation, we assume a unit cell with height 4, is surrounded by material with
effective height H, — hy (H, is the height of the entire perforated sheet structure). The surrounding material
behaves exactly the same as the unit cell until the load begins to drop. At that point, we assume localization
occurs in the unit cell, and no further deformation occurs in the surrounding material. In actuality the
surrounding material should have a slight elastic contraction, but because the elastic strains are small
compared to the plastic strains, this is an acceptable approximation. In another words, assume the stress—
strain behavior obtained from (18) is ¢ = f'(¢) and that the stress reaches a maximum o,,,x when & = gp,x.
The stress—strain behavior of the entire structure is then approximated as

f(e), when 0 <& < gmax
o= >

Hre—(Hr—hs )émax
f( 2}( 22 Lo > when ¢ Emax

(20)
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The mechanical behavior of the aluminum was modeled as elastic—viscoplastic, with a stress—strain rate
relation of the form

T=L:(D-D") (21)

V. . . . . . . .
where 7 is the Jaumann rate of Kirchhoff stress, L is a tensor of isotropic elastic moduli, and D is the total
rate of deformation. The plastic rate of deformation was assumed to be isotropic, power-law viscoplasticity
of the form

o [ & \'3s

where & is the effective stress, € is the effective plastic strain, and S is the deviatoric stress. The flow strength
g(&) of the aluminum was assumed to be first strain hardening, and then strain softening

B 2 n
oy+(amax—oy){l — <%) } N

8(e) = %amax{l+cos {n(“l )}}, g <e<é .

& —&]

0, £E=2 &

The above relations were chosen so that the material strain-hardens up to a plastic strain of ¢, strain-softens
at plastic strains between ¢; and ¢, and has a complete loss of load carrying capacity at plastic strains greater
than ¢,. The initial flow strength is given by o, while the maximum flow strength is indicated by opmax. The
Young’s modulus of the aluminum was also assumed to be a function of accumulated plastic strain

EOv gg &1
E(¢) = %Eo{l—i—cos [n(%)”, & <E< & (24)
O7 52?2

The addition of Eq. (24) to the model accounts for the reduction in stiffness that is expected as damage
accumulates in the aluminum matrix. We incorporated the constitutive law into the commercial finite
element code ABAQUS (1997) through a user-supplied subroutine UMAT, using a rate-tangent integra-
tion method by Peirce et al. (1984).

2.5. Determination of material parameters

The most obvious method for the determination of material parameters would be standard uniaxial
tensile tests on (unperforated) aluminum sheets. After material softening and subsequent localization of
deformation, however, the mechanical behavior of the aluminum can only be indirectly inferred through
further analysis. The anticipated failure mechanism in the perforated aluminum sheets is the localization of
deformation between adjacent holes. For this reason, we decided to test sheets with a uniform square array
of holes, and to infer the mechanical properties of the aluminum by finite element analyses of a corre-
sponding string of unit cells. It is hoped that the parameters determined in this manner will be most ap-
propriate for describing the softening behavior of the aluminum in the simulations using the selected
representative unit cells.

More specifically, the tensile sample used to determine the material properties had a 10 x 10 array of
1.016 mm holes. The holes were uniformly spaced over an area with dimensions 28.5 mm x 28.5 mm to
give a hole area fraction of 10%. The simulation of the experiment was performed using a string of five
simple unit cells and applying the appropriate periodic boundary conditions (see Fig. 2). To induce lo-



S. Jia et al. | International Journal of Solids and Structures 39 (2002) 2517-2532 2525

(a)

Sheet with uniform array of holes
-------- String of unit cells

® %005 ‘8‘ o7 015

Fig. 2. Material properties obtained by comparing the behavior of aluminum sheets with a uniform array of holes to corresponding
finite element simulations.

calization in only one unit cell the width of one cell in the string was made to be slightly smaller than
others.

As in Becker and Smelser (1994), the stress exponent was taken to be m = 100, while the material
parameters oy, Omax, €1, &, and n were adjusted to provide a fit to the experimental data. The experimental
and numerical stress—strain curves are shown in Fig. 2(b). The failure mechanism exhibited in both the
experiments and the simulations was strain localization directly across the ligaments between holes. The
specific material parameters used to model the aluminum matrix are shown in Table 1.

Table 1

Material properties of aluminum 1100-H14
Properties Value
Initial Young’s modulus, E, 72000 MPa
Poisson’s ratio, v 0.3
Yield strength, o, 9.0 MPa
Ultimate strength, opax 81.0 MPa
Softening strain, & 0.103
Failure strain, &, 3.5
Stress exponent, m 100
Strain rate, & 0.00028 s!

Strain hardening parameter, n 0.56
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3. Results

The six complex patterns used in the experiments and the corresponding unit cells used in the finite
element calculations are shown in Fig. 3. In each case, the periodic hole patterns appear to have a spatial
distribution similar to the complex structures from which they were derived. The unit cells used for the finite
element calculations are outlined in the lower left corner of the periodic structures. An example of the
power spectral densities for the complex and periodic patterns is given in Fig. 4.

Photographs of the tensile specimens, both before and after testing, are shown in Fig. 5. During the early
stages of loading, localized deformation occurred around all of the holes. Thin ligaments between some of
the holes subsequently necked and then failed. Upon further deformation, larger ligaments between holes
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Fig. 3. Diagrams of the six microstructures used in perforated aluminum sheets (left) and their corresponding periodic structures
(right). The unit cells used in finite element calculations are indicated by dashed rectangles.
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Fig. 3 (continued)
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necked primarily along the horizontal direction. The first major drop in load corresponded to rupture of a

number of these ligaments, often extending to one edge of each of the specimens.

Modeling localization and failure using the finite element method introduces a complicating factor into
the analysis. Unfortunately, once localization of deformation occurs, the presence of the finite element
mesh introduces an artificial length scale into the problem which in turn causes the solution to become mesh
dependant. We therefore chose the mesh refinement on the representative unit cells to be about the same as

the mesh density in the finite elements models that were used to obtain the material constants.

Fig. 6 compares the experimentally observed nominal stress—strain behavior to predictions based on the
representative unit cells. As is evident, the prediction of stress—strain behavior is quite similar to the ex-
perimental results, exhibiting the same trends in both strength and ductility. In order to more clearly see the
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Fig. 4. Power spectral densities of (a) the original hole pattern; (b) the original hole pattern after “rebinning”; and (c) the corre-
sponding periodic structure.

trends we also compared predicted vs experimental values of ultimate strengths in Fig. 7. The ultimate
strengths from the representative unit cells has a nearly linear correlation to experimental results. The slope
of the best fit line is 1.125.

Fig. 8 displays contour plots of effective plastic strain just prior to failure in each of the representative
unit cells. In each case, the predicted failure path corresponds to the regions of maximum plastic strain. The
effect of the periodic boundary conditions is evident, particularly for pattern #1, where the failure path
meanders from the top to the bottom of the unit cell. The density of the finite element mesh used in the
calculations is also clearly visible in the figures.

4. Discussion

In this investigation, idealized two-phase microstructures were constructed by perforating sheets of
aluminum with random patterns of holes. They were then subjected to uniaxial tension tests so that
nominal stress—strain relationships could be obtained. Each of the complex hole patterns were modeled
using representative unit cells with a statistically similar distribution of holes. The unit cells were obtained
by comparing the power spectral densities of the image of the original random hole pattern with that of an
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Fig. 5. Photographs of the perforated aluminum sheets after the uniaxial tensile experiments. (a)—(f) correspond to hole patterns 1
through 6, respectively.

idealized periodic pattern (Povirk, 1995). The resultant boundary value problem was solved by use of finite
elements. The experimental results show the strong effect that hole distribution can have in thin sheets,
which is also expected in other composite materials. The predicted nominal stress—strain curves closely
match those obtained experimentally.

It is worth noting some important limitations in the methods described in this paper. One obvious
limitation is that the method is restricted to two-dimensional microstructures, while composites with short
fiber or particle reinforcements are clearly three-dimensional in nature. Even for three-dimensional mi-
crostructures, however, it may be possible to adequately model the composite with two-dimensional,
generalized plain strain calculations. A more significant limitation in our view, however, is that the many
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Fig. 6. Stress—strain behavior of (a) the perforated aluminum sheets; (b) the corresponding unit cell calculations. Each color represents
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Fig. 7. Predicted ultimate strengths of the perforated aluminum sheets compared to experimental results. Horizontal bars represent the
range of strength variations for the three samples of each hole pattern exhibited in the experiments.

composite microstructures (see, for example, Park et al. (1997)) have regions with large clusters of particles,
and conversely, regions with little or no reinforcement. Such a microstructure would require a unit cell with
much larger numbers of reinforcements than those used in the present study, which could in turn render the
associated finite element calculations overly complex and computationally intractable.

The numerical methods used in this study could also be improved upon. For example, for composites
that have particles of various size, morphology, and orientation, it is presently unclear as to how re-
presentative reinforcements should be selected. Moreover, there are very likely better ways to compare the
spectral densities of the complex and periodic microstructures, and better ways to find the minimum of the
residual function »? (Eq. (12)) to ensure that the absolute minimum (and therefore the most representative
unit cell) is found. Perhaps techniques used in image analysis or pattern recognition could be used to
improve upon or even supplant the numerical methods used here.

Despite the limitations outlined above, however, we believe that the central ideas of this study have been
validated. With our experiments, we have shown that the spatial distribution of a second phase can sig-
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Fig. 8. Contour plots of accumulated effective plastic strain for representative unit cells. Regions of dark shading indicate elements that
have completely failed. (a)—(f) correspond to hole patterns 1 through 6.

nificantly affect the mechanical behavior, particularly regarding the evolution of damage and eventual
failure of the material. Using representative unit cells that have a statistically similar distribution of holes to
that of the perforated aluminum sheets, we have successfully predicted the effects of hole distribution on the
behavior of the sheets.
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